# Birzeit University - Faculty of Engineering <br> Department of Civil Engineering <br> Transportation Engineering - ENCE 431 

Instructors: Dr. Faisal Awadallah
Spring 2021
Final Exam (Part 2 out 65\%) online
Copy the pledge below in red and sign your name below it in the first page of the answer sheet

I PLEDGE NOT to use any help from anyone and not to communicate about the exam through any form or media

## Question 1: (30 marks) - No groups for this question, entire class one group

Given an airport with one precision instrument runway. The ends of the runway centerline have the following coordinates ( $\mathrm{N}: 15000^{\prime}, \mathrm{E}: 15000^{\prime}$ ) and ( $\mathrm{N}: 24000^{\prime}, \mathrm{E}: 11000^{\prime}$ ). The airportestablished elevation is $760^{\prime}$ above msl .

Determine the maximum height of a structure at a proposed construction site with the following coordinates ( $\mathrm{N}: 9000^{\prime}$, $\mathrm{E}: 6000^{\prime}, \mathrm{Z}: 730^{\prime}$ above msl ) according to the FAA imaginary surfaces standards
Note: all coordinates in feet

## Question 2: (10 marks)

Group A: Digit 5 and 6 from the left of students numbers 00-24 inclusive (e.g., 1171219)
Table below provides the expected average number of aircrafts arrival per day for four categories of aircrafts with expected mean time gate occupancy for each category; estimate the number of required gates according to European traffic.

| Aircraft category | Average number of aircraft <br> arrivals per hour | Mean time gate occupancy in minutes |
| :--- | :--- | :--- |
| A | 15 | 45 |
| B | 20 | 55 |
| C | 12 | 65 |
| C | 8 | 75 |

Group B: Digit 5 and 6 from the left of students numbers 25-49 inclusive (e.g., 1171349) Table below provides the expected average number of aircrafts arrival per day for four category of aircrafts with expected mean time gate occupancy for each category; estimate the number of required gates according to European traffic.

| Aircraft category | Average number of aircraft <br> arrivals per hour | Mean time gate occupancy in minutes |
| :--- | :--- | :--- |
| A | 20 | 45 |
| B | 22 | 55 |
| C | 18 | 65 |
| C | 10 | 75 |

## Group C: Digit 5 and 6 from the left of students numbers 50-74 inclusive (e.g., 1171609)

Table below provides the expected average number of aircrafts arrival per day for four category of aircrafts with expected mean time gate occupancy for each category; estimate the number of required gates according to European traffic.

| Aircraft category | Average number of aircraft <br> arrivals per hour | Mean time gate occupancy in minutes |
| :--- | :--- | :--- |
| A | 5 | 45 |
| B | 10 | 55 |
| C | 27 | 65 |
| C | 15 | 75 |

## Group D: Digit 5 and 6 from the left of students numbers 75-99 inclusive (e.g., 1171879)

Table below provides the expected average number of aircrafts arrival per day for four category of aircrafts with expected mean time gate occupancy for each category; estimate the number of required gates according to European traffic.

| Aircraft category | Average number of aircraft <br> arrivals per hour | Mean time gate occupancy in minutes |
| :--- | :--- | :--- |
| A | 3 | 45 |
| B | 17 | 55 |
| C | 20 | 65 |
| C | 25 | 75 |

## Question 3: (20 marks)

Group A: Digit 5 and 6 from the left of students numbers 10-40 inclusive (e.g., 1171119)
Given a design B757 aircraft for runway length requirement (similar to table 18.1 \& 18.2). The airport is at an elevation of 1000 meters and normal maximum temperature of the hottest month of the year is 32 degrees. Maximum operational take-off weight is 95000 kg , and maximum operational landing weight is $175,000 \mathrm{lb}$. Determine the required runway length assuming the difference between the highest and lowest points on the runway centerline is 9.5 meters.

Group B: Digit 5 and 6 from the left of students numbers 41-74 inclusive (e.g., 1171419)
Given a design B757 aircraft for runway length requirement (similar to table 18.1 \& 18.2). The airport is at an elevation of 1500 meters and normal maximum temperature of the hottest month of the year is 32 degrees. Maximum operational take-off weight is $100,000 \mathrm{~kg}$, and maximum operational landing weight is $180,000 \mathrm{lb}$. Determine the required runway length assuming the difference between the highest and lowest points on the runway centerline is 7.5 meters.

Group C: Digit 5 and 6 from the left of students numbers 75-99 and 00-09 inclusive (e.g., 1171099)
Given a design B 757 aircraft for runway length requirement (similar to table $18.1 \& 18.2$ ). The airport is at an elevation of 1000 meters and normal maximum temperature of the hottest month of the year is 28 degrees. Maximum operational take-off weight is 95000 kg , and maximum operational landing weight is 195000 lb . Determine the required runway length assuming the difference between the highest and lowest points on the runway centerline is 4.5 meters.

## Question 4: (5 marks)

Group A: Last two digits of students numbers 00-19 inclusive (e.g., 1171219)

Given the fetch of 10 km , wind velocity $10 \mathrm{~km} / \mathrm{h}$ and mean water depth of 6 meters at an inland lake, determine the maximum wave height

Group B: Last two digits of students numbers 20-39 inclusive (e.g., 1171220)

Given the fetch of 30 km , wind velocity $20 \mathrm{~km} / \mathrm{h}$ and mean water depth of 6 meters at an inland lake, determine the maximum wave height

Group C: Last two digits of students numbers $\mathbf{4 0 - 5 9}$ inclusive (e.g., 1171255)
Given the fetch of 25 km , wind velocity $40 \mathrm{~km} / \mathrm{h}$ and mean water depth of 6 meters at an inland lake, determine the maximum wave height

Group D: Last two digits of students numbers 60-79 inclusive (e.g., 1171269)

Given the fetch of 32 km , wind velocity $52 \mathrm{~km} / \mathrm{h}$ and mean water depth of 6 meters at an inland lake, determine the maximum wave height

Group E: Last two digits of students numbers $\mathbf{8 0} \mathbf{- 9 9}$ inclusive (e.g., 1171290)

Given the fetch of 21 km , wind velocity $80 \mathrm{~km} / \mathrm{h}$ and mean water depth of 6 meters at an inland lake, determine the maximum wave height

